
Rare Earth Elements (REEs)

REE Separation & Processing

Produces High-Purity, Magnet Material Rare Earth Minerals

Establishing a Domestic Supply of REEs is Critical to U.S. Interests

China Currently Dominates All Aspects of REE & Magnet Production

Geographical concentration of supply chain stages for sintered NdFeB magnets

From center: REE mining, oxide separation, metal refining, & magnet manufacturing

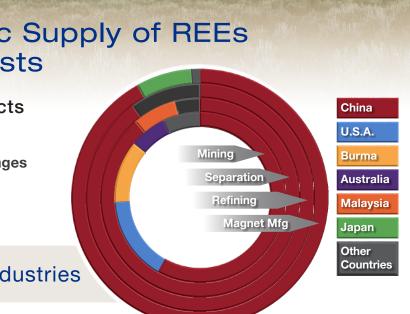
REEs are Essential to Key U.S. Industries

Our Team's Response to Chinese REE Dominance

- manufacturing supply chain

Specific REEs (Nd, Pr, Dy, Tb) are vital input materials for a vast range of future-facing products

Separation & Processing **Demonstration Plant Pro**


Bear Lodge is a World-Class Resource

- Located in NE Wyoming
- Rich supply of REEs
- Long mine life
- Demonstration program will use 1,000-ton sample previously extracted from Bear Lodge

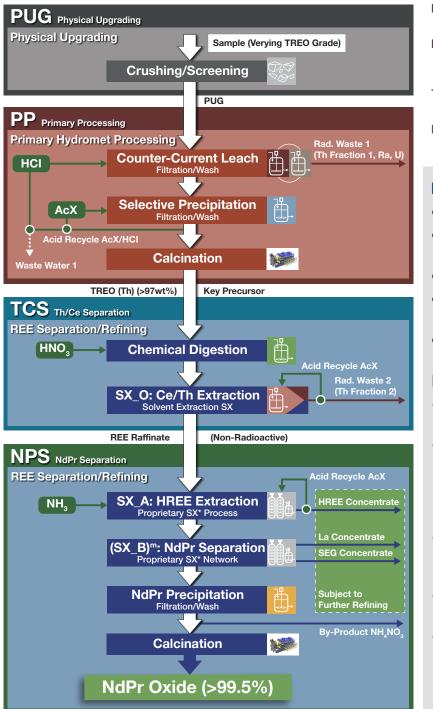
*U.S. DOE, Critical Materials Assessment 2023, July 2023.

Sm included because of its use in samarium/cobalt magnets. **Other REEs include Holmium, Erbium, Thulium, Lutetium, Scandium and Ytterbium

• Demonstrate unique, high-efficiency processes to provide a domestic capability to separate & refine individual REEs

Develop the Bear Lodge Project for a domestic source of REE materials

Build a foundation for a domestic magnet & electric motor


a	Rare Earth Elements	Distribution by Weight (%)					
	Neodymium (Nd)*	17.9					
g oject	Praseodymium (Pr)*	4.9					
-	Dysprosium (Dy)*	0.5					
ce	Terbium (Tb)*	0.1					
	Samarium (Sm)	3.0					
	Magnet Materials	26.4					
	Europium (Eu)	0.7					
	Yttrium (Y)	1.3					
	Cerium (Ce)	43.0					
	Lanthanum (La)	26.8					
	Gadolinium (Gd)	1.6					
	Other REEs**	0.2					
	Total Rare Earth Oxides	100.0					

UMWELTLEISTUNGEN LNV

Process Advantages

- 92-97% recovery of REE concentrate from Bear Lodge mineral sample
- Novel, high-efficiency process producing >99.5% pure NdPr oxide & other rare earth oxides (REOs). The
 process recycles the majority of chemicals leading to reduced costs and process waste as compared to
 traditional practices.
- First-of-a-kind, real-time control software developed from first-principles for process design and optimization
- 100% separation of thorium, radium, & other radionuclides disposed at licensed facilities
- Process designed for zero emissions

- **PUG Physical Upgrading** or comminution of the exploration sample; crushes sample to 1-3 mm size for further processing
- **PP Primary Processing** of the sample to produce a high-purity concentrate, separating the bulk tailings and radioactive materials from REEs
- TCS Thorium/Cerium Separation removes remaining radioactive materials as well as cerium
- NPS Neodymium/Praseodymium Separation refines REEs into groups including: NdPr, LaCe, SEG, and HREE concentrates

Project Team

- U.S. Department of Energy (DOE)
- General Atomics Electromagnetic Systems (GA-EMS)
- Rare Element Resources (RER)
- Umwelt und Ingenieurtechnik GmbH Dresden (UIT)
- LNV, a division of Ardurra

Project Objectives

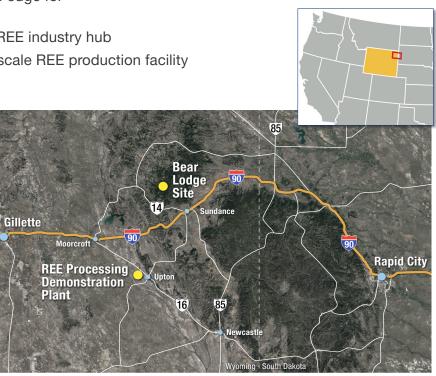
- Demonstrate the separation of NdPr & other REEs at high purity
- Produce up to 15 tons of NdPr at >99.5% purity as well as La, SEG (combined Sm, Eu, & Gd) & heavy rare earth element (HREE) concentrates, which would be subject to further refining
- Provide clear pathways for the separation of other rare earths, including Sm, Dy, Tb, & other essential heavy REEs
- Provide a basis for scale-up to, and economic assessment of, a commercial capacity plant
- Demonstrate a process capable of treating REO concentrate from other sources, either in the US or obtained as a result of initiatives to obtain REO from allied countries

First-of-a-Kind REE Separation & Processing Demonstration Plant to be Located in Upton, WY

- Establishes a domestic facility for REE separation & processing
- Demonstrates key process steps for production of >99.5% pure REE oxides
- Provides basis for future commercial plant to be located in the vicinity of the Bear Lodge site

State & Local Benefits

- Provides vital workforce training in key technical skills in the REE processing arena
- Provides partnership opportunities in Rare Earth Sciences with the University of Wyoming, including the School of Energy Resources & other graduate programs
- Ensures State of Wyoming has a competitive edge for domestic REE production and supply needs
- Furthers the development of Wyoming as a REE industry hub
- Lays the groundwork for future commercial-scale REE production facility
- 240 jobs over two year construction period
- 120 jobs for duration of operations (30+ years)
- Supports local tax base



Project Timeline

Task	2021		20	22			20	23			20	24		2025
REE Demonstration Plant	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Design & Engineering														
Procurement														
Construction														
Operations														

Use of pre-existing industrial site

